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Several studies of haplotype structures in the human genome in various populations have 
been published recently. Such knowledge may provide valuable information on human 
evolutionary history and lead to the development of more efficient strategies to identify 
genetic variants that increase susceptibility to human diseases. In this review, we 
summarize the current understanding of haplotype structure, diversity, and distribution in 
the human genome, with a focus on statistical issues in using haplotypes for studies of 
population genetics and evolutionary history, as well as to identify genetic variants 
underlying complex human traits.
Introduction
The Human Genome Project and other large-
scale efforts have identified millions of genetic
markers that can be used in genetic studies.
Although each marker can be analyzed inde-
pendently of other markers, it is much more
informative to analyze markers in a region of
interest simultaneously. The combination of
marker alleles on a single chromosome is called a
haplotype (Haploid Genotype). There is great
interest in understanding haplotype structures in
the human genome using identified genetic
markers because: 1) haplotype structures may
provide critical information on human evolu-
tionary history and the identification of genetic
variants underlying various human traits; and 2)
molecular technologies now make it possible to
study hundreds of thousands of genetic poly-
morphisms in population samples of reasonable
sizes. For haplotypes including markers tightly
linked with each other, for example, markers
within the same gene, alleles at these markers
often display statistical dependence, a phenome-
non called linkage disequilibrium (LD), or allelic
association. One major aspect of haplotype anal-
ysis is to identify LD patterns in different regions
and different populations because the very exist-
ence of LD among markers makes it possible to
infer population histories and localize genetic
variants underlying complex traits. It is well
known that LD is affected by many factors,
including the age of the variants, population his-
tory, recombination rates, gene conversion, natu-
ral selection, and other factors. Although LD can
be studied through theoretical population genet-
ics models, many recent empirical studies have
shown that available theoretical models are not

able to explain the complex haplotype structures
in the human genome. We review the haplotype
structures revealed by these empirical studies in
general populations and provide an overview of
statistical methods that have been useful in ana-
lyzing haplotypes. In addition, we discuss statis-
tical methods to identify candidate regions
associated with complex traits using haplotypes,
and we review various methods that have been
proposed to reduce the dimensionality of haplo-
type analysis. We conclude this review by point-
ing to several directions that need vigorous
developments in the next several years to fully
realize the potential in haplotypes.

Population genetics of haplotypes and 
linkage disequilibrium
Linkage disequilibrium
A study of haplotypes consisting of a short tan-
dem repeat polymorphism (STRP) and an Alu
deletion polymorphism at the CD4 locus in 42
worldwide populations first demonstrated the
usefulness of comparing LD patterns of different
populations for inferring population history [1].
The LD patterns between these two polymor-
phisms provided evidence of a common and
recent African origin for all non-African popula-
tions. This was the first study using autosomal
regions to provide evidence on the out-of-Africa
hypothesis, in contrast to studies using mito-
chondrial DNA and Y chromosomes. Long-
range haplotype structure may also provide a
more powerful tool to detect recent selection in
the human genome [2].

In addition to its use in inferring population
history, the extent of LD is a critical factor in
identifying disease-associated genetic variants
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and designing efficient studies to detect disease-
gene associations. There are many measures to
quantify the degree of association between two
polymorphisms [3]. The most commonly used
ones are D′ and r2. Both |D′| and r2 range
between 0 and 1. Simulation studies based on
simple population genetics models suggested
that useful LD extends only a few kilobases (kb)
around common single nucleotide polymor-
phisms (SNPs) [4]. However, empirical data
imply that LD can extend much further. For
example, a systematic study of 19 chromosomal
regions found that |D′| drops below 0.5, on aver-
age at ~ 60 kb in a Utah population and on aver-
age at ~ 5 kb in Yoruban samples [5]. It is also
important to choose appropriate LD measures to
characterize LD patterns. For example, the use of
|D′| as a measure was criticized as it is biased
upwards inversely with sample size [6]. Therefore,
different sample sizes from different populations
may confound LD comparisons. A systematic
study of markers on chromosome 22 using Euro-
pean samples showed similar patterns [7]. The
discrepancy between model-based simulation
results and empirical observations suggests that
the oversimplifying assumptions in the original
simulation study did not adequately account for
important factors that determine LD. Alterna-
tive simulations based on more realistic popula-
tion genetics models that include population
bottlenecks and non-uniform recombination
rates demonstrated that population bottlenecks
were not adequate in explaining the observed LD
patterns, mostly because these models cannot
simultaneously accommodate the observed
extent of LD and the level of genetic polymor-
phism in the genome [8].

Two major features have emerged from many
studies on the extent of LD at different loci and
in different populations. First, although LD
between two markers tends to decrease as their
physical distance increases, the variation is so
great that it is not possible to predict LD
between two polymorphisms reliably, based only
on their physical distance. Second, the amount
of LD differs among different populations, and
LD is usually weaker among Africans than other
populations [9-11]. This pattern of variation
strongly supports the hypothesis of recent expan-
sion of the human population. In summary, LD
is both locus and population specific, and it is
impossible to understand LD patterns in the
human genome without a systematic empirical
study that covers the genome and involves many
human populations. The fact that different

populations display different LD suggests that an
initial genome-wide association study may be
conducted in a population with stronger LD,
and the variants can be fine mapped in popula-
tions with less LD [12].

The magnitude of LD in a local region tends to
be small if the estimated local recombination rate is
high [5,7]. Since the recombination rate is associated
with many characteristics of the DNA sequences
[13], it is not surprising that LD is also significantly
associated with sequence properties [7].

Haplotype blocks
Some recent studies have found that the chro-
mosomes are structured such that each chromo-
some can be divided into many blocks, within
which there is limited haplotype diversity.
Although block structures were found in these
studies, there is no universally accepted defini-
tion of haplotype blocks. In fact, each study had
its own definition. Some examples of definitions
of haplotype blocks are: 

• a contiguous set of markers in which the aver-
age D′ is greater than some predetermined
threshold [5]

• a region where a small number of common
haplotypes account for the majority of chro-
mosomes [14,15]

• a chromosomal segment with reduced levels of
haplotype diversity

• regions with both limited haplotype diversity
and strong LD except for a few markers [7]

• regions with absolutely no evidence for his-
torical recombination between any pair of
SNPs [16]

The block structures identified in each study
depend strongly on the definition used, and
there has been no systematic comparison of hap-
lotype blocks identified under these various defi-
nitions. Which definition is most appropriate
may depend on how the inferred blocks will be
used. Different goals may be, for example, to
infer recombination hot spots or to identify
regions that are associated with complex traits.

In the following, we summarize some results
on haplotype blocks but stress that the identified
blocks were based on various definitions and
their biological relevance still needs to be dem-
onstrated. When a 500 kb region on chromo-
some 5 was studied using 103 common SNPs in
129 European trios, discrete haplotype blocks
with limited diversity punctuated by apparent
sites of recombination were found; the size of
these blocks ranged up to 100 kb [17]. A study of
Pharmacogenomics (2003)  4(2)
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51 autosomal regions in four populations found
that the minimal span of the blocks averaged
9 kb in Yoruban and African-American samples
with a range of < 1 kb up to 94 kb, whereas the
average in European and Asian samples was
18 kb with a range of < 1 kb to 173 kb [11]. Block
structures were also found in systematic studies
of chromosome 21 [14] and chromosome 22 [7].

Although haplotype block boundaries have
been found to correlate with recombination hot
spots [18], haplotype blocks can arise without
recombination hotspots due to other factors that
affect LD patterns, such as genetic drift [16,19].
More data are needed to evaluate the usefulness
of haplotype blocks as a general tool to identify
recombination hot spots. Although there are usu-
ally recombination events between blocks, LD is
often found between loci in different blocks, and
this LD can be substantial [11]. Therefore, using
each block as a unit to study association between
complex traits and candidate regions may not be
the most efficient strategy.

Estimates of haplotype frequency and of 
haplotype pairs carried by an individual
Although it is possible to infer two haplotypes
from each individual through molecular methods
[14], such methods are currently too expensive and
laborious to be practical in large-scale population
studies. Information from relatives may help
resolve haplotype ambiguity, but such ambiguity
may still exist even with data from many relatives,
especially as the number of markers increases.
Therefore, several assumption-based numerical
methods have been developed to infer haplotypes
and estimate haplotype frequencies. The central
Hardy-Weinberg assumption underlying these
methods is that each haplotype carried by an
individual represents an independent sample
from the population of haplotypes.

Clark first proposed an algorithm to infer
haplotypes among unrelated individuals [20]:
haplotypes are determined from those individu-
als with no haplotype ambiguity, and then
ambiguous individuals are considered sequen-
tially to resolve their haplotypes. Several groups
applied the Expectation-Maximization (EM)
algorithm [21] to obtain the maximum likeli-
hood estimates of haplotype frequencies in the
sample [22-24]. The EM algorithm uses an initial
set of haplotype frequency estimates to calcu-
late the conditional distribution for haplotype
pairs that each individual carries (Estimation
step). Based on these conditional distributions,
haplotype frequency estimates can be updated

(Maximization-step). The EM algorithm iterates
between these two steps until haplotype fre-
quency estimates converge. Despite its simplic-
ity, standard applications of the EM algorithm
may not be feasible when analyzing many mark-
ers simultaneously, as the number of haplotypes
that needs to be considered increases exponen-
tially with the number of markers. Several algo-
rithms try to circumvent this limitation [25]. The
PHASE program [26] and its modified version [27]

use coalescent models and Markov chain Monte
Carlo methods to assign phases in each individ-
ual and estimate haplotype frequencies. These
algorithms use population genetics models to
relate different haplotype patterns such that a
haplotype that is more similar to the commonly
observed haplotype patterns is more likely to be
inferred to be present than less similar haplo-
types. Several other Bayesian methods and mod-
ified EM algorithms have also been developed to
facilitate haplotype analysis for many markers
simultaneously [28]. Although some comparisons
of different methods have been made in the
above mentioned studies, it is likely that no
method is uniformly best. There remains a need
for further comparative studies and new meth-
odology. In addition, haplotype inference in
(large) families remains a challenging problem.

In haplotype inference, one crucial, yet under
appreciated, step is choosing the set of markers
to be analyzed. Although some methods are able
to handle many markers, there may still be too
many possible haplotypes to estimate frequen-
cies, especially if there is weak LD among them.
In the most extreme case, if all the markers to be
analyzed are in linkage equilibrium, the number
of possible haplotypes may be too large for avail-
able algorithms. On the other hand, although
phase inference is needed in a region with many
tightly linked markers, it may not be necessary to
infer haplotype for all markers in a long region,
say over a 10 cM interval, if the focus is on iden-
tifying disease variants in a local region, usually
within a candidate gene.

Although many algorithms produce the distri-
bution of haplotype pairs for an individual, some
programs only produce the most likely haplotype
pair. This practice may lead to loss of informa-
tion and potential bias in further analyses that
regard inferred phases as observed phases. For
example, consider an individual who has a 55%
probability of carrying one haplotype pair and a
45% probability of carrying another haplotype
pair. If only the more likely pair are kept and
used in association analyses, information about
173



REVIEW

174
the other pair will be lost and this may lead to
both loss of efficiency and bias in assessing asso-
ciation between this region and traits of interest.

With appropriate statistical tools, haplotype
frequencies can be estimated from directly
observed haplotypes, from diploid individuals
where phases may be ambiguous [29], from related
individuals [30,31], and from DNA pooling with
two or more individuals [32,33]. Although for a
fixed sample size, molecular haplotyping meth-
ods can produce much more precise estimates of
haplotype frequencies than other approaches, the
considerable cost in obtaining and analyzing
individual chromosomes may make alternative
designs preferable [30]. Empirical data also indi-
cate advantages from using family data, including
detection of genotyping errors and integration
with meiotic maps [7].

Association analysis with haplotypes
When multiple markers, often in LD, in a chro-
mosomal region are studied to assess the associa-
tion between this region and traits of interest, a
statistical analysis based on haplotypes may be
more efficient than separate analyses of the indi-
vidual markers. This has been demonstrated
both through simulation studies [34] and empiri-
cal studies [35,36].

Statistical methods that use haplotypes to map
disease genes can be broadly divided into two
categories: those developed to locate the exact
chromosomal location (i.e., the exact base pair)
of disease-susceptibility variants, and those
developed to locate a general chromosomal
region with disease (i.e., a candidate gene
region). For the first class of methods, the under-
lying principle is that more similarity among the
chromosomes of diseased subjects should be
observed near the loci of genetic variants that
increase disease susceptibility. This general prin-
ciple can be realized via various test statistics.
One approach is to explicitly model the origin of
the disease variant(s), their evolution in the gen-
eral population, as well as the history of the gen-
eral population. Such methods are model-based,
and as a class, are called LD mapping methods
[37]. Another class of methods does not explicitly
model the evolution of haplotypes carrying dis-
ease susceptibility variants but uses test statistics
based on heuristic reasoning. For example, the
Haplotype Sharing Statistic [38] scans the candi-
date region and compares the mean length of
haplotype sharing on chromosomes of cases with
disease versus chromosomes of control subjects
without disease. For these fine-mapping methods,

the candidate position is varied systematically in
a region and a score defining the evidence for
genetic association is calculated. The position
where the largest score is obtained is usually
taken as the most likely site for a disease suscep-
tibility variant. Although such methods have
successfully mapped genetic variants for Mende-
lian diseases in isolated populations, their utility
for identifying common disease-susceptibility
variants that predispose to complex diseases still
needs to be demonstrated empirically. In fact,
when the primary focus is a candidate region of
limited length, i.e., several hundred kilobases,
strong dependence among markers and a lack of
clear relationship between physical proximity
and LD within a local region may make fine
mapping difficult or impossible. For example,
when markers are in perfect LD, there is no sta-
tistical means to distinguish which marker is the
true functional one. It is likely that the final
identification and understanding of genetic vari-
ants responsible for disease susceptibility will rely
on ancillary experiments to define the functional
effects of the variants. Therefore, a more realistic
and achievable objective for haplotype analysis is
to localize a region that contains disease suscepti-
bility variants.

To assess associations between haplotypes in a
candidate region and traits of interest, the sim-
plest models regress the trait on the two haplo-
types each individual carries as well as on other
factors, such as age, gender and smoking status.
The trait might be continuous, such as blood
pressure, or discrete, such as the presence or
absence of disease, or the time to disease onset. If
there is no association between this region and
traits of interest (null hypothesis), all the haplo-
types are expected to have the same effect on trait
values. However, different haplotypes should
affect phenotypes differently when an associa-
tion exists. Therefore, under the alternative
hypothesis, we allow different haplotypes to
affect traits differently, and interactions among
haplotypes as well as interactions between haplo-
types and environmental factors may be taken
into account. Standard statistical methods in lin-
ear regression analysis can be used to investigate
association between continuous traits and haplo-
types, whereas logistic models [39] can be used to
analyze binary traits, and survival models can be
used for time to disease-onset data.

Two major issues complicate these simple
regression analyses in samples of unrelated
individuals. The first issue is haplotype uncer-
tainty. As discussed above, haplotypes may have
Pharmacogenomics (2003)  4(2)
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to be inferred from marker phenotype data unless
molecular haplotyping methods are used. There-
fore, haplotype uncertainty needs to be incorpo-
rated into the regression approach to analyzing
associations between haplotypes and disease out-
comes. The second issue is haplotype complexity.
Although haplotypes may be more informative
than single markers, the power of haplotype anal-
ysis is reduced by the potentially large number of
haplotypes that needs to be studied. Statistical
approaches that have been developed to address
these two issues are outlined below.

Statistical approaches to address haplotype 
uncertainty
In the presence of haplotype uncertainty, an
individual can be assigned to have different hap-
lotype pairs with different probabilities. These
probabilities depend on the specific method
used for phase inference. Then statistical models
that directly model an individual’s phenotype as
a function of each inferred haplotype pair,
weighted by their estimated probability, can be
used for association studies. This approach has
led to a mixture model for association between
continuous traits and haplotypes [40], and gen-
eral score tests between binary and continuous
traits and haplotypes [41]. Statistical methods
that simply compare haplotype frequencies
between cases and controls without explicitly
modeling trait–haplotype associations have also
been proposed [42].

Approaches to deal with haplotype 
complexity
Two classes of methods have been developed to
reduce the number of haplotypes considered in
association studies. The first class of methods
divides the whole chromosomal region into
smaller regions for analysis, whereas the second
class groups haplotypes into a smaller number
before association analysis. The first class of
methods generally has a sliding window on the
candidate region and assesses evidence for associ-
ation within each window [38,43-45]. The sliding
window serves two purposes. First, the number
of haplotype patterns in each window may be
significantly less than that in the whole region,
so the regression analysis involves fewer parame-
ters and likely has better power if there is an asso-
ciation between disease and haplotypes. Second,
it is anticipated that evidence near the true dis-
ease variants is stronger than that in other
regions. Therefore, these methods resemble fine
disease-mapping methods.

The second class of methods has a somewhat
longer history [46-49]. The central assumption is
that an unknown mutation causing a phenotypic
effect occurred at some point in the evolutionary
history of the population and became embedded
within the historical structure represented in a
tree structure relating different haplotypes, called
a cladogram. Evolutionary principles suggest
that certain portions of the cladogram would dis-
play the phenotypic effect while other portions
would not. Thus, the cladogram defines a nested
analysis of variance that simultaneously detects
phenotypic effects and localizes the effects
within the cladogram.

It has been argued that haplotype block struc-
tures can be helpful for association studies
because each haplotype block can be treated as a
locus with several alleles (the block-specific hap-
lotypes) in association studies [17]. However, the
results depend on the definition of haplotype
blocks, and such methods may not be the most
efficient ones if there is substantial LD among
alleles in different blocks [11].

Conclusion and outlook
There is a growing belief that haplotypes may
hold the key to better understand human evolu-
tionary history and to more efficiently identify
genetic variants underlying complex traits.
Although great progress has been made and
much has been learned in the past several years
about haplotype structures in the human
genome, much work remains to adequately char-
acterize haplotype and LD patterns throughout
the genome because such patterns are both locus
and population specific and theoretical models
have limited predictive value. Even more chal-
lenging than the need for empirical data is the
difficulty in synthesizing and interpreting haplo-
type data to learn what factors shape haplotype
structure and how to use haplotypes to assist in
localizing disease susceptibility variants. There is
also an urgent need to develop efficient designs
to conduct genetic association studies and to
develop statistical tools to analyze data from
these studies. Although there is a general belief
that haplotype analysis might be more powerful
than single marker analysis, the true power of
haplotype analysis still needs to be demonstrated
both in theoretical studies and in practice. Statis-
tical methods need to incorporate knowledge of
haplotype patterns, and statistical findings need
to be interpreted in combination with prior bio-
logical information that can be extracted with
bioinformatics tools.
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Although statistical methods have been devel-
oped for haplotype associations using unrelated
individuals, pedigree data are routinely collected
in genetic studies. Haplotype inference and
analysis in general pedigrees is an area that needs
vigorous development in the next several years
to realize the information in pedigrees fully. In
addition, statistical methods are needed to
appropriately analyze more complex data types:
for example, survival data, ordinal data, and
longitudinal data.

In genome-wide association studies, tens of
thousands of regions are studied to detect possi-
ble associations with traits of interest, and the
statistical power to identify a true association
may be drastically reduced by the need to adjust
for the large number of statistical tests to be per-
formed. Even within a single region, the multiple
comparison issue may arise because of a poten-
tially large number of haplotypes present in that
region. Although recent developments in multi-
ple comparison adjustments, such as the concept

of false discovery rate [50] instead of the family-
wise type-I error rate, may lead to better strate-
gies to identify true associations, statistical meth-
ods that incorporate prior biological information
into the data analysis may improve the power to
detect true associations. In addition, better pro-
cedures are needed to reduce the dimensionality
of the space spanned by haplotypes in a local
region in order to ameliorate power loss from
multiple comparisons.

Although millions of markers are available,
LD among markers in a local region can be used
to reduce the number of the markers that need to
be studied. Several methods have been proposed
to select representative markers based on a sam-
ple from the general population [51-53]. One use
of these representative markers is to study vari-
ous aspects of population genetics. For this pur-
pose, selecting markers that capture the diversity
or otherwise represent the full set of markers
seems reasonable, and selection can be based on
a sample of unaffected individuals. A second goal
is to select a set of markers to detect an associa-
tion of disease with haplotype. For this purpose,
the strategies for selecting subsets of markers
based on diversity or representative are not spe-
cifically tailored for designing powerful studies
of genetic associations with disease. These strate-
gies may lead to poor choices of markers for
detecting disease associations. For example, if we
knew a disease susceptible variant, there would
be no need to study other markers near this vari-
ant. In the case that this variant is rare and we
select markers based on diversity, it is likely that
we would choose to study more polymorphic
markers that are not as strongly associated with
the disease of interest as this ‘rare’ variant, lead-
ing to reduced power to identify disease-marker
associations. Alternative strategies for marker
selection may prove to be more powerful and
appropriate in disease association studies.

Although it is impossible to distinguish a true
disease susceptibility genetic variant from a
marker that is in perfect LD with this variant
using association studies, it may be possible if the
LD is not perfect [54]. However, a very large sam-
ple may be needed to distinguish these two
markers to identify the truly functional one. It is
not clear whether it is feasible to identify func-
tional variants statistically in light of the LD pat-
terns emerging from recent empirical studies.

Another issue that we have not addressed is
the potential bias in association studies resulting
from population stratification. Many methods
[55-57] have been developed to use a large number
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of markers either to identify the underlying pop-
ulation structure or to adjust for bias due to pop-
ulation stratification. Such methods can be
applied to haplotype analysis to make the results
robust to population stratification.

Finally, it is still not clear what types of
genetic variants, such as common alleles or rare
alleles, underlie most common diseases [58,59].
The exact nature of these variants shall influence
our strategy to identify them, and future devel-
opments in designs and analytical methods for
association studies will depend on our increas-
ing knowledge of the biology of disease-induc-
ing variants. Although haplotype analysis may
increase our power to map disease genes

compared to single marker analysis, it is possible
that heterogeneity among disease variants result-
ing in the same phenotype may seriously limit
our ability to identify each individual variant,
even with the help of haplotypes. The choice of
study population and sampling design, and the
incorporation of epidemiologic and genetic
information will be important considerations in
planning and executing an association study to
identify disease variants.
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